A TensorFlow Extension Framework for Optimized Generation of Hardware CNN Inference Engines

Author:

Leon VasileiosORCID,Mouselinos Spyridon,Koliogeorgi Konstantina,Xydis Sotirios,Soudris Dimitrios,Pekmestzi Kiamal

Abstract

The workloads of Convolutional Neural Networks (CNNs) exhibit a streaming nature that makes them attractive for reconfigurable architectures such as the Field-Programmable Gate Arrays (FPGAs), while their increased need for low-power and speed has established Application-Specific Integrated Circuit (ASIC)-based accelerators as alternative efficient solutions. During the last five years, the development of Hardware Description Language (HDL)-based CNN accelerators, either for FPGA or ASIC, has seen huge academic interest due to their high-performance and room for optimizations. Towards this direction, we propose a library-based framework, which extends TensorFlow, the well-established machine learning framework, and automatically generates high-throughput CNN inference engines for FPGAs and ASICs. The framework allows software developers to exploit the benefits of FPGA/ASIC acceleration without requiring any expertise on HDL development and low-level design. Moreover, it provides a set of optimization knobs concerning the model architecture and the inference engine generation, allowing the developer to tune the accelerator according to the requirements of the respective use case. Our framework is evaluated by optimizing the LeNet CNN model on the MNIST dataset, and implementing FPGA- and ASIC-based accelerators using the generated inference engine. The optimal FPGA-based accelerator on Zynq-7000 delivers 93% less memory footprint and 54% less Look-Up Table (LUT) utilization, and up to 10× speedup on the inference execution vs. different Graphics Processing Unit (GPU) and Central Processing Unit (CPU) implementations of the same model, in exchange for a negligible accuracy loss, i.e., 0.89%. For the same accuracy drop, the 45 nm standard-cell-based ASIC accelerator provides an implementation which operates at 520 MHz and occupies an area of 0.059 mm 2 , while the power consumption is ∼7.5 mW.

Publisher

MDPI AG

Reference42 articles.

1. Very Deep Convolutional Networks for Large-Scale Image Recognition;Simonyan;arXiv,2014

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supereye: smart advertisement insertion for online video streaming;Multimedia Tools and Applications;2022-09-03

2. Performance Metric Estimation of Fast RCNN with VGG-16 Architecture for Emotional Recognition;International Journal of Applied Mathematics, Computational Science and Systems Engineering;2022-06-25

3. Fall Detection System With Artificial Intelligence-Based Edge Computing;IEEE Access;2022

4. Power-Aware Characteristics of Matrix Operations on Multicores;Applied Artificial Intelligence;2021-12-29

5. Akıllı Telefonlar için Birleştirme Modeli Tabanlı Görüntü Altyazılama;European Journal of Science and Technology;2021-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3