Abstract
The fast emergence of IoT devices and its accompanying big and complex data has necessitated a shift from the traditional networking architecture to software-defined networks (SDNs) in recent times. Routing optimization and DDoS protection in the network has become a necessity for mobile network operators in maintaining a good QoS and QoE for customers. Inspired by the recent advancement in Machine Learning and Deep Reinforcement Learning (DRL), we propose a novel MADDPG integrated Multiagent framework in SDN for efficient multipath routing optimization and malicious DDoS traffic detection and prevention in the network. The two MARL agents cooperate within the same environment to accomplish network optimization task within a shorter time. The state, action, and reward of the proposed framework were further modelled mathematically using the Markov Decision Process (MDP) and later integrated into the MADDPG algorithm. We compared the proposed MADDPG-based framework to DDPG for network metrics: delay, jitter, packet loss rate, bandwidth usage, and intrusion detection. The results show a significant improvement in network metrics with the two agents.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献