Securing Blockchain-Based Supply Chain Management: Textual Data Encryption and Access Control

Author:

Khan Imran1,Ali Qazi Ejaz1ORCID,Hadi Hassan Jalil2ORCID,Ahmad Naveed3,Ali Gauhar3ORCID,Cao Yue2ORCID,Alshara Mohammed Ali34ORCID

Affiliation:

1. Department of Computer Science, University of Peshawar, Peshawar 24701, Pakistan

2. School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

3. College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

4. College of Computer Sciences and Information for Educational and Quality Affairs, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia

Abstract

A supply chain (SC) encompasses a network of businesses, individuals, events, data, and resources orchestrating the movement of goods or services from suppliers to customers. Leveraging a blockchain-based platform, smart contracts play a pivotal role in aligning business logic and tracking progress within supply chain activities. Employing two distinct ledgers, namely Hyperledger and Ethereum, introduces challenges in handling the escalating volume of data and addressing the technical expertise gap related to supply chain management (SCM) tools in blockchain technology. Within the domain of blockchain-based SCM, the growing volume of data activities introduces challenges in the efficient regulation of data flow and the assurance of privacy. To tackle these challenges, a straightforward approach is recommended to manage data growth and thwart unauthorized entries or spam attempts within blockchain ledgers. The proposed technique focuses on validating hashes to ensure blockchain integrity. Emphasizing the authentication of sensitive data on the blockchain to bolster SCM, this approach compels applications to shoulder increased accountability. The suggested technique involves converting all data into textual format, implementing code encryption, and establishing permission-based access control. This strategy aims to address inherent weaknesses in blockchain within SCM. The results demonstrate the efficacy of the proposed technique in providing security and privacy for various types of data within SCM. Overall, the approach enhances the robustness of blockchain-based SCM, offering a comprehensive solution to navigate evolving challenges in data management and privacy assurance.

Funder

Prince Sultan University

Publisher

MDPI AG

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3