Comparison of Shallow (−20 °C) and Deep Cryogenic Treatment (−196 °C) to Enhance the Properties of a Mg/2wt.%CeO2 Nanocomposite

Author:

Gupta Shwetabh1ORCID,Parande Gururaj1ORCID,Gupta Manoj1ORCID

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore

Abstract

Magnesium and its composites have been used in various applications owing to their high specific strength properties and low density. However, the application is limited to room-temperature conditions owing to the lack of research available on the ability of magnesium alloys to perform in sub-zero conditions. The present study attempted, for the first time, the effects of two cryogenic temperatures (−20 °C/253 K and −196 °C/77 K) on the physical, thermal, and mechanical properties of a Mg/2wt.%CeO2 nanocomposite. The materials were synthesized using the disintegrated melt deposition method followed by hot extrusion. The results revealed that the shallow cryogenically treated (refrigerated at −20 °C) samples display a reduction in porosity, lower ignition resistance, similar microhardness, compressive yield, and ultimate strength and failure strain when compared to deep cryogenically treated samples in liquid nitrogen at −196 °C. Although deep cryogenically treated samples showed an overall edge, the extent of the increase in properties may not be justified, as samples exposed at −20 °C display very similar mechanical properties, thus reducing the overall cost of the cryogenic process. The results were compared with the data available in the open literature, and the mechanisms behind the improvement of the properties were evaluated.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3