Affiliation:
1. Faculty of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
2. Department of Physical and Biophysical Chemistry (PC III), Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
Abstract
Atomic force microscopy (AFM) belongs to the high-resolution surface morphology investigation methods. Since it can, in many cases, be applied in air, samples can more easily be inspected than by a scanning electron microscope (SEM). In addition, several special modes exist which enable examination of the mechanical and other physical parameters of the specimen, such as friction, adhesion between tip and sample, elastic modulus, etc. In tapping mode, e.g., phase imaging can be used to qualitatively distinguish between different materials on the surface. This is especially interesting for polymers, for which the evaluation by energy-dispersive X-ray spectroscopy (EDS) is mostly irrelevant. Here we give an overview of phase imaging experiments on different filaments used for 3D printing by fused deposition modeling (FDM). Furthermore, the acrylonitrile butadiene styrene (ABS), especially different poly(lactide acids) (PLAs) with special features, such as thermochromic or photochromic properties, are investigated and compared with SEM images.
Funder
Federal Ministry for Economic Affairs and Climate Action
Deutsche Forschungsgemeinschaft
Subject
Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献