Open-Source Photovoltaic—Electrical Vehicle Carport Designs

Author:

Vandewetering NicholasORCID,Hayibo Koami SoulemaneORCID,Pearce Joshua M.ORCID

Abstract

Solar powering the increasing fleet of electrical vehicles (EV) demands more surface area than may be available for photovoltaic (PV)-powered buildings. Parking lot solar canopies can provide the needed area to charge EVs but are substantially costlier than roof- or ground-mounted PV systems. To provide a low-cost PV parking lot canopy to supply EV charging, in this study, we provide a full mechanical and economic analysis of three novel PV canopy systems: (1) an exclusively wood, single-parking-spot spanning system, (2) a wood and aluminum double-parking-spot spanning system, and (3) a wood and aluminum cantilevered system for curbside parking. All three systems can be scaled to any amount of EV parking spots. The complete designs and bill of materials (BOM) of the canopies are provided, along with basic instructions, and are released with an open-source license that will enable anyone to fabricate them. Analysis results indicate that single-span systems provide cost savings of 82–85%, double-span systems save 43–50%, and cantilevered systems save 31–40%. In the first year of operation, PV canopies can provide 157% of the energy needed to charge the least efficient EV currently on the market if it is driven the average driving distance in London, ON, Canada.

Publisher

MDPI AG

Subject

General Medicine

Reference93 articles.

1. Photovoltaics—A Path to Sustainable Futures;Futures,2002

2. Fu, R., Feldman, D., and Margolis, R. (2018). U.S. Solar Photovoltaic System Cost Benchmark: Q1 2018. Renew. Energy, 63, Available online: https://www.osti.gov/dataexplorer/biblio/dataset/1503848.

3. Dudley, D. (2022, August 29). Renewable Energy Will Be Consistently Cheaper Than Fossil Fuels by 2020, Report Claims. Available online: https://www.forbes.com/sites/dominicdudley/2018/01/13/renewable-energy-cost-effective-fossil-fuels-2020/.

4. Vaughan, A. (2017). Time to Shine: Solar Power Is Fastest-Growing Source of New Energy. Guardian, Available online: https://www.theguardian.com/environment/2017/oct/04/solar-power-renewables-international-energy-agency.

5. (2022, August 29). Short-Term Energy Outlook, Available online: https://www.eia.gov/outlooks/steo/report/electricity.php.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3