Utilization of Artificial Neural Networks for Precise Electrical Load Prediction

Author:

Pavlatos Christos1ORCID,Makris Evangelos2ORCID,Fotis Georgios3ORCID,Vita Vasiliki3,Mladenov Valeri4ORCID

Affiliation:

1. Hellenic Air Force Academy, Dekelia Air Base, Acharnes, 13671 Athens, Greece

2. School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou St, 15780 Athens, Greece

3. Department of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education, 14121 Athens, Greece

4. Department Fundamentals of Electrical Engineering, Technical University of Sofia, 8 Kliment Ohridski Blvd., Block 12, 1000 Sofia, Bulgaria

Abstract

In the energy-planning sector, the precise prediction of electrical load is a critical matter for the functional operation of power systems and the efficient management of markets. Numerous forecasting platforms have been proposed in the literature to tackle this issue. This paper introduces an effective framework, coded in Python, that can forecast future electrical load based on hourly or daily load inputs. The framework utilizes a recurrent neural network model, consisting of two simpleRNN layers and a dense layer, and adopts the Adam optimizer and tanh loss function during the training process. Depending on the size of the input dataset, the proposed system can handle both short-term and medium-term load-forecasting categories. The network was extensively tested using multiple datasets, and the results were found to be highly promising. All variations of the network were able to capture the underlying patterns and achieved a small test error in terms of root mean square error and mean absolute error. Notably, the proposed framework outperformed more complex neural networks, with a root mean square error of 0.033, indicating a high degree of accuracy in predicting future load, due to its ability to capture data patterns and trends.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3