A Design of Experiment Approach for Development of Electron Beam Powder Bed Fusion Process Parameters and Improvement of Ti-6Al-4V As-Built Properties

Author:

Braun Dor,Ganor Yaron Itay,Samuha Shmuel,Guttmann Gilad Mordechai,Chonin Michael,Frage Nachum,Hayun ShmuelORCID,Tiferet Eitan

Abstract

Additive manufacturing is a novel and breakthrough technology by which parts can be manufactured for various purposes and services. As in any production process, the desired properties of additively manufactured components, particularly in electron beam melting processes, ultimately depend on the manufacturing process parameters. Process parameters should be designed accordingly to manufacture parts with specific and desired characteristics. This study focuses on examining the effect of process parameters, such as beam current and velocity, focus offset, and line offset, at three different values each, on the properties of Ti-6Al-4V alloy. The study on the effect of the process parameters on the as-built material’s performance was performed using the Taguchi approach using an L9 (34) orthogonal array. The properties of printed parts (density, surface roughness, elastic moduli, hardness, tensile characteristics, fractography, and microstructure) were tested. A wide range of properties was obtained and analyzed; namely, porosity varied from 8% to almost fully dense materials with density higher than 99.9% and a range of yield and ultimate tensile strength values and brittle samples with less than 1% elongation to ductile samples with an elongation greater than 16%. The overall performance of printed parts was determined based on an evaluation criterion. Several parameter combinations were found and yielded the fabrication of parts with high density and relatively fine microstructure. The comparison of the best parameter combinations determined in this study and the parameters recommended by the machine manufacturer showed that improved results were obtained, and even when using the optimal parameters, they can be improved even more. This result highlights the ability of the proposed DOE method to further develop existing results and even for development of manufacturing parameters for new materials.

Funder

pazi

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Reference63 articles.

1. ASM HandBook: Properties and Selection Nonferrous Alloys and Special-Purpose Materials,1990

2. Titanium—A Techincal Guide;Donachie,2000

3. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications

4. Additive manufacturing of Ti6Al4V alloy: A review

5. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing;Gibson,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3