A Sensitive Carbon Dioxide Sensor Based on Photoacoustic Spectroscopy with a Fixed Wavelength Quantum Cascade Laser

Author:

Qiao Shunda,Qu Yanchen,Ma YufeiORCID,He Ying,Wang Yao,Hu Yinqiu,Yu XinORCID,Zhang Zhonghua,Tittel Frank K.ORCID

Abstract

A photoacoustic spectroscopy (PAS) based carbon dioxide (CO2) sensor with a fixed wavelength quantum cascade laser (FW-QCL) was demonstrated. The emission wavelength of the FW-QCL at 4.42 μm in the mid-infrared spectral region matched a fundamental CO2 absorption line. Amplitude modulation of the laser intensity was used to match the resonant photoacoustic (PA) cell. The noise from the background was reduced with the correlation demodulation technique. The experimental results showed that the sensor had excellent signal stability and a concentration linear response. When the integration time was 1 s, a 1σ minimum detection limit (MDL) of 2.84 parts per million (ppm) for CO2 detection was achieved. The long-term stability of the sensor was evaluated by means of an Allan deviation analysis. With an integration time of ~100 s, the MDL was improved to 1 ppm. This sensor was also used to measure the CO2 concentration from some common emission sources, such as cigarette smoking, automobile exhaust, and the combustion of some carbon-containing materials, which confirmed the stability and robustness of the reported FW-QCL based CO2-PAS sensor system.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

Fundamental Research Funds for the Central Universities

Welch Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3