Targeted Antimicrobial Therapies: A Solution to Overcoming Antimicrobial Resistance in Humans

Author:

Zai Muhammad Jawad12,Cheesman Matthew James3ORCID,Cock Ian Edwin12ORCID

Affiliation:

1. Centre for Planetary Health and Food Security, Griffith University, Brisbane, QLD 4111, Australia

2. School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia

3. School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia

Abstract

Overuse or misuse of broad-spectrum antibiotics increases the risk of the emergence of antibiotic-resistant bacteria, which increases the possibility of antimicrobial-resistant (AMR) bacterial infections, and subsequently raises healthcare costs. The excessive use of broad-spectrum antibiotics has also been linked to increased death rates, whilst the benefits that they offer against antibiotic-resistant bacterial pathogens are minimal. Patients infected with antibiotic-resistant bacterial pathogens frequently receive inadequate antimicrobial therapies due to a lack of effective options than those with non-resistant infections, resulting in poor health outcomes and longer recovery times, especially among patients who are critically ill. Broad-spectrum antibiotics also disturb the gut microbiome, which is increasingly recognized as a regulator of immune health. This study offers insights into the use of targeted antimicrobial therapies for bacterial infections, focusing on strategies that mitigate the risk of antibiotic resistance and unwanted side effects associated with the use of broad-spectrum antibiotics. We focus on identifying the genotype and phenotype of bacterial pathogens and then using either nanoparticle-based, vaccine-based, bacteriophage-based, monoclonal antibody-based, and CRISPR-based targeted therapies to directly kill those pathogens and reduce collateral damage. Furthermore, the mechanisms of action of these targeted therapies and their advantages and disadvantages are discussed.

Publisher

MDPI AG

Reference128 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3