Temperature Distribution in the Flow of a Viscous Incompressible Non-Newtonian Williamson Nanofluid Saturated by Gyrotactic Microorganisms

Author:

Areshi Mounirah,Alrihieli Haifaa,Alali Elham,Megahed Ahmed M.

Abstract

The heat and mass transfer in magnetized non-Newtonian Williamson nanofluid flow, saturated by gyrotactic microorganisms due to a stretched sheet, is debated here. The rough sheet is subjected to uniform heat flux, and its velocity is proportional to its distance from the slit. Nanofluid viscosity and thermal conductivity are temperature-dependent, but microbe diffusivity and Brownian motion are concentration-dependent. Through similarity transformation, the system of modeled equations is reduced to dimensionless differential equations. We employed the shooting approach in conjunction with the Runge–Kutta scheme to obtain a solution for the physical model. For various combinations of the controlling parameters, some numerical results are found. When the generated results are compared to the existing literature, the highest settlement is found. According to numerical results, the skin-friction coefficient rises as the magnetic field and thermal conductivity parameters rise, while the opposite tendency is observed for both the slip velocity and viscosity parameters.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3