Refined Continuous Control of DDPG Actors via Parametrised Activation

Author:

Hossny MohammedORCID,Iskander JulieORCID,Attia MohamedORCID,Saleh KhaledORCID,Abobakr AhmedORCID

Abstract

Continuous action spaces impose a serious challenge for reinforcement learning agents. While several off-policy reinforcement learning algorithms provide a universal solution to continuous control problems, the real challenge lies in the fact that different actuators feature different response functions due to wear and tear (in mechanical systems) and fatigue (in biomechanical systems). In this paper, we propose enhancing the actor-critic reinforcement learning agents by parameterising the final layer in the actor network. This layer produces the actions to accommodate the behaviour discrepancy of different actuators under different load conditions during interaction with the environment. To achieve this, the actor is trained to learn the tuning parameter controlling the activation layer (e.g., Tanh and Sigmoid). The learned parameters are then used to create tailored activation functions for each actuator. We ran experiments on three OpenAI Gym environments, i.e., Pendulum-v0, LunarLanderContinuous-v2, and BipedalWalker-v2. Results showed an average of 23.15% and 33.80% increase in total episode reward of the LunarLanderContinuous-v2 and BipedalWalker-v2 environments, respectively. There was no apparent improvement in Pendulum-v0 environment but the proposed method produces a more stable actuation signal compared to the state-of-the-art method. The proposed method allows the reinforcement learning actor to produce more robust actions that accommodate the discrepancy in the actuators’ response functions. This is particularly useful for real life scenarios where actuators exhibit different response functions depending on the load and the interaction with the environment. This also simplifies the transfer learning problem by fine-tuning the parameterised activation layers instead of retraining the entire policy every time an actuator is replaced. Finally, the proposed method would allow better accommodation to biological actuators (e.g., muscles) in biomechanical systems.

Publisher

MDPI AG

Reference38 articles.

1. Artificial Intelligence for Prosthetics: Challenge Solutions;Kidziński,2020

2. Learning to run challenge: Synthesizing physiologically accurate motion using deep reinforcement learning;Kidziński,2018

3. Human-level control through deep reinforcement learning

4. Reinforcement learning in robotics: A survey

5. Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3