Author:
Huang Xiaofei,Shi Fei,Wang Guoling,Yu Jiangbo,Ma Suhua,Li Weifeng
Abstract
The kinetics and mechanism of ternesite formation (calcium sulfosilicate, Ca5(SiO4)2SO4, C5S2$) were investigated by studying the reaction between beta-dicalcium silicate (β-C2S) and calcium sulfate dihydrate (CaSO4∙2H2O). Mineralogical composition development was monitored using X-ray diffraction (XRD) and backscattered scanning electron microscopy (BSEM) coupled to energy-dispersive X-ray spectroscopy (EDS). Ternesite can form in the 1100 to 1200 °C range by the solid-phase reaction of β-C2S and CaSO4. The formation of ternesite is favored by increasing the sintering temperature or extending the sintering time. The solid-phase reaction is carried out by diffusion of CaSO4 to β-C2S. The kinetics equation of ternesite is consistent with three-dimensional diffusion models (3-D model, D3 model or Jander model). The equation of the D3 model is 1 − 2α/3 − (1 − α)2/3 = kt. On the basis of the Arrhenius equation, the activation energy of ternesite is 239.8 kJ/mol.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献