Distributed Operation of Microgrids Considering Secondary Frequency Restoration Based on the Diffusion Algorithm

Author:

Hong Su-Been,Nguyen Thai-ThanhORCID,Jeon Jinhong,Kim Hak-ManORCID

Abstract

This paper proposes a distributed control of the microgrid (MG) system based on the diffusion algorithm. Unlike the existing decentralized strategy that focuses on the economic operation of the MG system, the proposed strategy performs secondary frequency regulation in addition to the optimization of the MG system. The hierarchical control technique is employed in this study, where the primary layer is responsible for power control and the secondary layer is responsible for the frequency control and economic operation of the MG system. A tested MG system with four distributed generations (DGs) is considered. Three types of communication topologies are evaluated in this study, which are line, ring, and full topologies. The proposed controller is compared to the conventional consensus controller to show the effectiveness of the proposed diffusion controller. Simulation results show that the proposed diffusion strategy improves the convergence speed of the distributed control, resulting in the improvement of power responses and frequency quality of the MG system. The tested system is implemented in the MATLAB/Simulink environment to show the feasibility of the proposed diffusion controller.

Funder

Ministry of Science and ICT, South Korea

Korea Electrotechnology Research Institute

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secondary control with grid-forming inverters for an island grid restoration approach without communication;Electric Power Systems Research;2022-12

2. Hierarchical Decentralized Control of Building Structure based on Genetic Algorithm and BP Neural Network;2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI);2022-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3