Security State Estimation for Cyber-Physical Systems against DoS Attacks via Reinforcement Learning and Game Theory

Author:

Jin ZengwangORCID,Zhang Shuting,Hu Yanyan,Zhang Yanning,Sun Changyin

Abstract

This paper addressed the optimal policy selection problem of attacker and sensor in cyber-physical systems (CPSs) under denial of service (DoS) attacks. Since the sensor and the attacker have opposite goals, a two-player zero-sum game is introduced to describe the game between the sensor and the attacker, and the Nash equilibrium strategies are studied to obtain the optimal actions. In order to effectively evaluate and quantify the gains, a reinforcement learning algorithm is proposed to dynamically adjust the corresponding strategies. Furthermore, security state estimation is introduced to evaluate the impact of offensive and defensive strategies on CPSs. In the algorithm, the ε-greedy policy is improved to make optimal choices based on sufficient learning, achieving a balance of exploration and exploitation. It is worth noting that the channel reliability factor is considered in order to study CPSs with multiple reasons for packet loss. The reinforcement learning algorithm is designed in two scenarios: reliable channel (that is, the reason for packet loss is only DoS attacks) and unreliable channel (the reason for packet loss is not entirely from DoS attacks). The simulation results of the two scenarios show that the proposed reinforcement learning algorithm can quickly converge to the Nash equilibrium policies of both sides, proving the availability and effectiveness of the algorithm.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Ningbo Natural Science Foundation

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3