Development of SrTiO3 Photocatalysts with Visible Light Response Using Amino Acids as Dopant Sources for the Degradation of Organic Pollutants in Aqueous Systems

Author:

Konstas Panagiotis-Spyridon,Konstantinou Ioannis,Petrakis Dimitrios,Albanis Triantafyllos

Abstract

N-doped and N,S-co-doped SrTiO3 photocatalysts were prepared using glycine and L-histidine amino acids as nitrogen sources and L-cysteine as nitrogen and sulphur source. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 porosimetry, UV-Vis diffuse reflectance (DRS) and fluorescence spectroscopy, dynamic light scattering (DLS). Cubic SrTiO3 phase is formed in all samples, with crystal size ranged from 14.2 nm to 35.7 nm. The catalysts’ specific surface area and porosity depend on the amino acid dopant showing micro-mesoporosity for glycine, mesoporosity for histidine and non-porosity for cysteine. The lowest band gap (2.95 eV) was observed for the sample G-N-STO3 prepared with glycine (N:Sr:Ti 3:1:1 molar ratio) which produced also the higher amount of •OH radicals. The photocatalytic activity was tested against the degradation of methylene blue (MB) dye under UV-Vis and visible light irradiation following first-order kinetics.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3