A Hybrid Machine Learning Model Coupling Double Exponential Smoothing and ELM to Predict Multi-Factor Landslide Displacement

Author:

Zhu Xing,Zhang FulingORCID,Deng Maolin,Liu Junfeng,He Zhaoqing,Zhang Wengang,Gu Xin

Abstract

The deformation of landslides is a non-linear dynamic and complex process due to the impacts of both inherent and external factors. Understanding the basis of landslide deformation is essential to prevent damage to properties and losses of life. To forecast the landslides displacement, a hybrid machine learning model is proposed, in which the Variational Modal Decomposition (VMD) is implemented to decompose the measured total surface displacement into the trend and periodic components. The Double Exponential Smoothing algorithm (DES) and Extreme Learning Machine (ELM) were adopted to predict the trend and the periodic displacement, respectively. Particle Swarm Optimization (PSO) algorithm was selected to obtain the optimal ELM model. The proposed method and implementation procedures were illustrated by a step-like landslide in the Three Gorges Reservoir area. For comparison, Least Square Support Vector Machine (LSSVM) and Convolutional Neutral Network–Gated Recurrent Unit (CNN–GRU) were also conducted with the same dataset to forecast the periodic component. The application results show that DES-PSO-ELM outperformed the other two methods in landslide displacement prediction, with RMSE, MAE, MAPE, and R2 values of 1.295mm, 0.998 mm, 0.008%, and 0.999, respectively.

Funder

the National Key Research and Development Project

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3