Abstract
Passive millimeter wave has been employed in security inspection owing to a good penetrability to clothing and harmlessness. However, the passive millimeter wave images (PMMWIs) suffer from low resolution and inherent noise. The published methods have rarely improved the quality of images for PMMWI and performed the detection only based on PMMWI with bounding box, which cause a high rate of false alarm. Moreover, it is difficult to identify the low-reflective non-metallic threats by the differences in grayscale. In this paper, a method of detecting concealed threats in human body is proposed. We introduce the GAN architecture to reconstruct high-quality images from multi-source PMMWIs. Meanwhile, we develop a novel detection pipeline involving semantic segmentation, image registration, and comprehensive analyzer. The segmentation network exploits multi-scale features to merge local and global information together in both PMMWIs and visible images to obtain precise shape and location information in the images, and the registration network is proposed for privacy concerns and the elimination of false alarms. With the grayscale and contour features, the detection for metallic and non-metallic threats can be conducted, respectively. After that, a synthetic strategy is applied to integrate the detection results of each single frame. In the numerical experiments, we evaluate the effectiveness of each module and the performance of the proposed method. Experimental results demonstrate that the proposed method outperforms the existing methods with 92.35% precision and 90.3% recall in our dataset, and also has a fast detection rate.
Funder
the Ministry of Science and Technology of the People’s Republic of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献