Dynamic-Vision-Based Force Measurements Using Convolutional Recurrent Neural Networks

Author:

Baghaei Naeini FariborzORCID,Makris DimitriosORCID,Gan DongmingORCID,Zweiri YahyaORCID

Abstract

In this paper, a novel dynamic Vision-Based Measurement method is proposed to measure contact force independent of the object sizes. A neuromorphic camera (Dynamic Vision Sensor) is utilizused to observe intensity changes within the silicone membrane where the object is in contact. Three deep Long Short-Term Memory neural networks combined with convolutional layers are developed and implemented to estimate the contact force from intensity changes over time. Thirty-five experiments are conducted using three objects with different sizes to validate the proposed approach. We demonstrate that the networks with memory gates are robust against variable contact sizes as the networks learn object sizes in the early stage of a grasp. Moreover, spatial and temporal features enable the sensor to estimate the contact force every 10 ms accurately. The results are promising with Mean Squared Error of less than 0.1 N for grasping and holding contact force using leave-one-out cross-validation method.

Funder

Khalifa University of Science, Technology and Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An insect vision-inspired neuromorphic vision systems in low-light obstacle avoidance for intelligent vehicles;Machine Vision and Applications;2024-07-25

2. Force-EvT: A Closer Look at Robotic Gripper Force Measurement with Event-Based Vision Transformer;2024 6th International Conference on Reconfigurable Mechanisms and Robots (ReMAR);2024-06-23

3. The role of neuromorphic and biomimetic sensors;Industrial Robot: the international journal of robotics research and application;2024-06-21

4. Bimodal SegNet: Fused instance segmentation using events and RGB frames;Pattern Recognition;2024-05

5. Lossless Encoding of Time-Aggregated Neuromorphic Vision Sensor Data Based on Point-Cloud Compression;Sensors;2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3