Geometallurgy of Cobalt Black Ores in the Katanga Copperbelt (Ruashi Cu-Co Deposit): A New Proposal for Enhancing Cobalt Recovery

Author:

Mambwe Pascal,Shengo MichelORCID,Kidyanyama Théophile,Muchez PhilippeORCID,Chabu Mumba

Abstract

Copper-cobalt deposits in the Central African Copperbelt belong to the Sediment-Hosted Stratiform Copper (SHSC) type and are situated in the Neoproterozoic Katanga Supergroup. This paper describes in detail the geology, geochemistry and hydrometallurgy of cobalt, with a special focus on the Black Ore Mineralised Zone (BOMZ) unit from the Ruashi Cu-Co deposit as a case study. Based on results from fieldwork and laboratory testing, it was concluded that the BOMZ consists of a succession of massive and stratified dolostones, which are weathered into carbonaceous clay dolostones and clays. The Lower “Calcaire à Minéreaux Noirs Formation” (Lower CMN Formation) consists of stratified and finely laminated dolostones, which are weathered at the surface into clayey to siliceous dolostones. The cobalt concentration in the weathering zone is due to supergene enrichment, a process that is linked to the formation of a cobalt cap. The ore consists of heterogenite associated with minor amounts of chrysocolla and malachite. Minor carrollite, chalcopyrite, chalcocite and bornite are present in unweathered fragments. The cobalt grade in both the BOMZ and Lower CMN decreases within depth while the copper grade increases. These grade changes reflect the variation in mineralogy with depth from heterogenite with minor amounts of malachite and chrysocolla to malachite, chrysocolla with traces of heterogenite, spherocobaltite, chalcocite, chalcopyrite, carrollite and bornite. Based on the Cu (100xAS Cu/TCu) and Co ratio (100 xAS Co/TCo), which is related to the ore mineralogy, oxide ores (Cu ratio ≥ 75%) and oxide dominant mixed ores (Cu ratio < 75%, containing the copper sulphide chalcocite) can be differentiated in both the BOMZ and Lower CMN. The absence of talc and the low concentration of Ni, Mn and Fe, on the one hand, and the high-grade Cu in the BOMZ, on the other hand, facilitate the hydrometallurgy of cobalt but require a specific processing. Consequently, the recovery of Co from the BOMZ requires the application of a processing method that is based on sulphuric acid (30 g/L) leaching under reducing conditions (300–350 mV) and the removal of impurities (Cu > 95% and Mn ≈ 99%) from the pregnant leach solution (PLS) by solvent extraction (SX) prior to the precipitation of cobalt as a high-grade hydroxide (40.5%). The sulphuric acid leaching of the BOMZ enabled achieving, after 8 h of magnetic stirring (500 rpm), a highest yield of 93% Co, with other major elements Mn (84%) and Cu (40%). The latter forms a main co-product of the Co exploitation. In contrast, the highest leaching yield for Fe remained smaller than 5%.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3