Interfacial Mixing Analysis for Strained Layer Superlattices by Atom Probe Tomography

Author:

Rajeev Ayushi,Chen Weixin,Kirch Jeremy,Babcock Susan,Kuech Thomas,Earles Thomas,Mawst Luke

Abstract

Quantum wells and barriers with precise thicknesses and abrupt composition changes at their interfaces are critical for obtaining the desired emission wavelength from quantum cascade laser devices. High-resolution X-ray diffraction and transmission electron microscopy are commonly used to calibrate and characterize the layers’ thicknesses and compositions. A complementary technique, atom probe tomography, was employed here to obtain a direct measurement of the 3-dimensional spatially-resolved compositional profile in two InxGa1−xAs/InyAl1−yAs III-V strained-layer superlattice structures, both grown at 605 °C. Fitting the measured composition profiles to solutions to Fick’s Second Law yielded an average interdiffusion coefficient of 3.5 × 10−23 m2 s−1 at 605 °C. The extent of interdiffusion into each layer determined for these specific superlattices was 0.55 nm on average. The results suggest that quaternary active layers will form, rather than the intended ternary compounds, in structures with thicknesses and growth protocols that are typically designed for quantum cascade laser devices.

Funder

Air Force Research Laboratory

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3