Abstract
With the continuous miniaturization of conventional integrated circuits, obstacles such as excessive cost, increased resistance to electronic motion, and increased energy consumption are gradually slowing down the development of electrical computing and constraining the application of deep learning. Optical neuromorphic computing presents various opportunities and challenges compared with the realm of electronics. Algorithms running on optical hardware have the potential to meet the growing computational demands of deep learning and artificial intelligence. Here, we review the development of optical neural networks and compare various research proposals. We focus on fiber-based neural networks. Finally, we describe some new research directions and challenges.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献