A New Approach to Predict Dynamic Loads Considering Highway Alignment Using Data Mining Techniques

Author:

Lin MiaoORCID,Hu Changbin,Easa Said M.ORCID,Jiang Zhenliang

Abstract

Premature damage to heavy-duty pavement has been found to be significantly caused by the vehicle–highway alignment interaction, especially in mountainous regions. This phenomenon was further verified by field pavement damage investigations and field tests. In order to elucidate the potential mechanism of this interaction, it is important to address the vehicle dynamic loads generated by the interaction between vehicle and pavement. Based on this, the paper realizes a new method of vehicle dynamic load prediction using data mining techniques, namely artificial neural network (ANN) and support vector machine (SVM)). The data, including dynamic loads and highway geometric characteristics, were collected by a wheel force transducer (WFT) and global positioning system (GPS), respectively. The coefficient of determination (R2) and root mean square error (RMSE) were used to evaluate the performance of the prediction models. The results showed that the proposed dynamic load prediction model established by ANN was better than that by SVM. Moreover, the model implied that dynamic loads were highly correlated with curvature and longitudinal grade, and furthermore, curvature was found to have a larger effect. The proposed dynamic load prediction technique provides a feasible and rapid approach to identify pavement damage under complex vehicle–highway alignment interactions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3