Effectiveness of Dune Reconstruction and Beach Nourishment to Mitigate Coastal Erosion of the Ebro Delta (Spain)

Author:

Costa Giuseppe Pio1ORCID,Marino Massimiliano1ORCID,Cáceres Iván2ORCID,Musumeci Rosaria Ester1ORCID

Affiliation:

1. Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy

2. Laboratori d’Enginyeria Marítima, Universitat Politècnica de Catalunya, Jordi Girona 1, 08034 Barcelona, Spain

Abstract

Coastal areas facing increasing erosion are resorting to sand displacement strategies to mitigate the erosive impact, which is exacerbated by climate change. In the face of climate change, coastal managers are more frequently resorting to sand displacement strategies to recover eroding coastlines. These vulnerable coastal zones require innovative approaches to minimize the need for frequent sand replenishment, extend their effectiveness and lower their maintenance expenses. This study undertakes a comparison of four primary nourishment strategies—a conventional uniform nourishment technique and the placement of a single sand dune evaluated at three different positions—in contrast to a scenario where no intervention is carried out. The investigation employs the XBeach numerical model to assess the outcomes of these diverse strategies under both low- and high-energetic storm conditions. The case study is a degraded coastal beach in the Ebro Delta (Spain). The results reveal a significant decrease in erosion when the dune is positioned closest to the shoreline. However, this erosion mitigation effect diminishes as the dune is situated further inland. Conversely, the sand nourishment measure exhibits minimal fluctuations in the volume of eroded sand when compared to the scenario with no intervention.

Funder

VARIO

REST-COAST

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3