Assessment of Inflation Schemes on Parameter Estimation and Their Application in ENSO Prediction in an OSSE Framework

Author:

Gao Yanqiu12ORCID

Affiliation:

1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China

Abstract

The ensemble Kalman filter is often used in parameter estimation, which plays an essential role in reducing model errors. However, filter divergence is often encountered in an estimation process, resulting in the convergence of parameters to the improper value and finally in parameter estimation failure. To alleviate this degeneration, various covariance inflation schemes have been proposed. In this study, I examined six currently used inflation schemes: fixed inflation, conditional covariance inflation, modified estimated parameter ensemble spread, relaxation-to-prior perturbations, relaxation-to-prior spread, and new conditional covariance inflation. The six schemes were thoroughly explored using the Zebiak–Cane model and the local ensemble transform Kalman filter in the observing system simulation experiment framework. Emphasis was placed on the comparison of these schemes when it came to estimating single and multiple parameters in terms of oceanic analyses and resultant El Niño–Southern Oscillation (ENSO) predictions. The results showed that the new conditional covariance inflation scheme had the best results in terms of the estimated parameters, resultant state analyses, and ENSO predictions. In addition, the results suggested that better parameter estimation yields better state simulations, resulting in improved predictions. Overall, this study provides viable information for selecting inflation schemes for parameter estimation, offering theoretical guidance for constructing operational assimilation systems.

Funder

National Natural Science Foundation of China

Southern Marine Science and Engineering Guangdong Laboratory

Scientific Research Fund of the Second Institute of Oceanography, MNR

Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3