Transcriptome Profile Analysis of Intestinal Upper Villus Epithelial Cells and Crypt Epithelial Cells of Suckling Piglets

Author:

Zou LijunORCID,Shao YiruiORCID,Xu Yinfeng,Wu Yuliang,Zhou Jian,Xiong Xia,Yin Yulong

Abstract

It is well known that the small intestinal epithelial cells of mammals rapidly undergo differentiation, maturation, and apoptosis. However, few studies have defined the physiological state and gene expression changes of enterocytes along the crypt-villus axis in suckling piglets. In the present study, we obtained the intestinal upper villus epithelial cells (F1) and crypt epithelial cells (F3) of 21-day suckling piglets using the divalent chelation and precipitation technique. The activities of alkaline phosphatase, sucrase, and lactase of F1 were significantly higher (p < 0.05) than those of F3. To explore the differences at the gene transcription level, we compared the global transcriptional profiles of F1 and F3 using RNA-seq analysis technology. A total of 672 differentially expressed genes (DEGs) were identified between F1 and F3, including 224 highly expressed and 448 minimally expressed unigenes. Functional analyses indicated that some DEGs were involved in the transcriptional regulation of nutrient transportation (SLC15A1, SLC5A1, and SLC3A1), cell differentiation (LGR5, HOXA5 and KLF4), cell proliferation (PLK2 and TGFB3), transcriptional regulation (JUN, FOS and ATF3), and signaling transduction (WNT10B and BMP1), suggesting that these genes were related to intestinal epithelial cell maturation and cell renewal. Gene Ontology (GO) enrichment analysis showed that the DEGs were mainly associated with binding, catalytic activity, enzyme regulator activity, and molecular transducer activity. Furthermore, KEGG pathway analysis revealed that the DGEs were categorized into 284 significantly enriched pathways. The greatest number of DEGs enriched in signal transduction, some of which (Wnt, Hippo, TGF-beta, mTOR, PI3K-Akt, and MAPK signaling pathways) were closely related to the differentiation, proliferation, maturation and apoptosis of intestinal epithelial cells. We validated the expression levels of eight DEGs in F1 and F3 using qRT-PCR. The present study revealed temporal and regional changes in mRNA expression between F1 and F3 of suckling piglets, which provides insights into the regulatory mechanisms underlying intestinal epithelial cell renewal and the rapid repair of intestinal mucosal damage.

Funder

Hunan Provincial Natural Science Foundation of China

Training Program for Excellent Young Innovators of Changsha

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3