Autonomous Underwater Vehicle Path Tracking Based on the Optimal Fuzzy Controller with Multiple Performance Indexes

Author:

Tian Qunhong123,Wang Tao4,Song Yuming4,Wang Yunxia4,Liu Bing4

Affiliation:

1. Qingdao Ship Science and Technology Co., Ltd., Harbin Engineering University, Qingdao 266000, China

2. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

3. College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

4. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Autonomous underwater vehicles (AUVs) are increasingly being used in missions involving submarine cable detection, underwater archaeology, pipeline inspection, military reconnaissance, and so on. It is very important to realize AUV path tracking to accomplish these missions. In this paper, a fuzzy controller based on the established kinematic and dynamic models of AUV systems is presented to solve the AUV path-tracking problem. In order to design the fuzzy controller to exhibit good performance, we select the path length, smoothness, and cross-track position error as the multiple optimization performance indexes for the fuzzy controller. We propose the particle swarm optimization (PSO) algorithm to determine the parameters of the membership functions. Different scenarios are presented to test the performance of the proposed algorithm, including the straight line, sine curve, half-moon shape, Archimedean spiral, and practical paths. The results are given to illustrate the effectiveness and feasibility of the fuzzy controller with the optimization of multiple performance indexes.

Funder

China Post-doctoral Science Foundation

Post-doctoral Applied Research Project of Qingdao City

Project of Shandong Province Higher Educational Young Innovative Talent Introduction

Cultivation Team

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3