A Comparative Analysis of Active Learning for Biomedical Text Mining

Author:

Naseem UsmanORCID,Khushi MatloobORCID,Khan Shah Khalid,Shaukat KamranORCID,Moni Mohammad Ali

Abstract

An enormous amount of clinical free-text information, such as pathology reports, progress reports, clinical notes and discharge summaries have been collected at hospitals and medical care clinics. These data provide an opportunity of developing many useful machine learning applications if the data could be transferred into a learn-able structure with appropriate labels for supervised learning. The annotation of this data has to be performed by qualified clinical experts, hence, limiting the use of this data due to the high cost of annotation. An underutilised technique of machine learning that can label new data called active learning (AL) is a promising candidate to address the high cost of the label the data. AL has been successfully applied to labelling speech recognition and text classification, however, there is a lack of literature investigating its use for clinical purposes. We performed a comparative investigation of various AL techniques using ML and deep learning (DL)-based strategies on three unique biomedical datasets. We investigated random sampling (RS), least confidence (LC), informative diversity and density (IDD), margin and maximum representativeness-diversity (MRD) AL query strategies. Our experiments show that AL has the potential to significantly reducing the cost of manual labelling. Furthermore, pre-labelling performed using AL expediates the labelling process by reducing the time required for labelling.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Reference73 articles.

1. Automated cancer registry notifications: Validation of a medical text analytics system for identifying patients with cancer from a state-wide pathology repository;Nguyen;AMIA Annu. Symp. Proc.,2016

2. Automated reconciliation of radiology reports and discharge summaries;Koopman;AMIA Annu. Symp. Proc.,2015

3. Natural language processing: algorithms and tools to extract computable information from EHRs and from the biomedical literature

4. Natural language processing: an introduction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3