Simulation Optimization for Complex Multi-Domain Physical Systems Based on Partial Resolving

Author:

Hou Kexi,Li YaohuiORCID

Abstract

The iterative process of simulation optimization is a time-consuming task, as it involves executing the main simulation program in order to evaluate the optimal constraints and objective functions repeatedly according to the values of tuner parameters. Parameter optimization for a model of a multi-domain physical system based on Modelica is a typical simulation optimization problem. Traditionally, each simulation during each iterative step needs resolve all the variables in all the mass differential-algebraic equations (DAE) generated from the simulation model through constructing and traversing the solving dependency graph of the model. In order to improve the efficiency of the simulation optimization process, a new method named partial simulation resolving algorithm based on the set of input parameters and output variables for complex simulation model was proposed. By using this algorithm, a minimum solving graph (MSG) of the simulation model was built according to the set of parameters, constraints, and objective functions of the optimization model. The simulation during the optimization iterative process needs only to resolve the variables on the MSG, and therefore this method could decrease the simulation time greatly during every iterative step of the optimization process. As an example, the parameter optimization on economy of fuel for a heavy truck was realized to demonstrate the efficiency of this solving strategy. This method has been implemented in MWorks—a Modelica-based simulation platform.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference31 articles.

1. Principles of Object-oriented Modeling and Simulation with Modelica 2.1;Fritzson,2003

2. Modelica Grouphttp://www.Modelica.org

3. Dymola—Dynamic Modeling Laboratory (Dynasim AB)http://www.dynasim.se/

4. Modeling and Performance Simulation for AircraftHydraulic Energy System Based on Modelica and Dymola;Ding;Mach. Tool Hydraul.,2010

5. MathModelicahttp://www.mathcore.com/products/mathModelica/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3