Investigation of TaC and TiC for Particle Strengthening of Co-Re-Based Alloys

Author:

Seif Eugen1,Rösler Joachim1,Werner Jonas2ORCID,Weirich Thomas E.2ORCID,Mayer Joachim2ORCID

Affiliation:

1. Institute for Materials Science, Technische Universität Braunschweig, Langer Kamp 8, 38106 Braunschweig, Germany

2. Central Facility for Electron Microscopy (GFE), RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany

Abstract

Cobalt-Rhenium (Co-Re)-based alloys are currently investigated as potential high-temperature materials with melting temperatures beyond those of nickel-based superalloys. Their attraction stems from the binary Co-Re phase diagram, exhibiting complete miscibility between Co and Re, whereby the melting temperature steadily increases with the Re-content. Thus, depending on the Re-content, one can tune the melting temperature between that of pure Co (1495 °C) and that of pure Re (3186 °C). Current investigations focus on Re-contents of about 15 at.%, which makes melting with standard equipment still feasible. In addition to solid solution strengthening due to the mixture of Co- and Re-atoms, particle strengthening by tantalum carbide (TaC) and titanium carbide (TiC) precipitates turned out to be promising in recent studies. Yet, it is currently unclear which of the two particle types is the best choice for high temperature applications nor has the strengthening mechanism associated with the monocarbide (MC)-precipitates been elucidated. To address these issues, we perform compression tests at ambient and elevated temperatures on the particle-free base material containing 15 at.% of rhenium (Re), 5 at.% of chromium (Cr) and cobalt (Co) as balance (Co-15Re-5Cr), as well as on TaC- and TiC-containing variants. Additionally, transmission electron microscopy is used to analyze the shape of the precipitates and their orientation relationship to the matrix. Based on these investigations, we show that TiC and TaC are equally suited for precipitation strengthening of Co-Re-based alloys and identify climb over the elongated particles as a rate controlling particle strengthening mechanism at elevated temperatures. Furthermore, we show that the Re-atoms are remarkably strong obstacles to dislocation motion, which are overcome by thermal activation at elevated temperatures.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3