Evaluation of High-Loaded Ni-Based Catalysts for Upgrading Fast Pyrolysis Bio-Oil

Author:

Carriel Schmitt Caroline,Zimina Anna,Fam YakubORCID,Raffelt Klaus,Grunwaldt Jan-DierkORCID,Dahmen Nicolaus

Abstract

The catalytic activity of high-loaded Ni-based catalysts for beech wood fast-pyrolysis bio-oil hydrotreatment is compared to Ru/C. The influence of promoter, temperature, reaction time, and consecutive upgrading is investigated. The catalytic activity is addressed in terms of elemental composition, pH value, H2 consumption, and water content, while the selectivity is based on the GC-MS/FID results. The catalysts showed similar deoxygenation activity, while the highest hydrogenation activity and the highest upgraded oil yields were obtained with Ni-based catalysts. The elemental composition of upgraded oils was comparable for 2 and 4 h of reaction, and the temperature showed a positive effect for reactions with Ni–Cr and Ru/C. Ni–Cr showed superior activity for the conversion of organic acids, sugars and ketones, being selected for the 2-step upgrading reaction. The highest activity correlates to the strength of the acid sites promoted by Cr2O3. Consecutive upgrading reduced the content of oxygen by 64.8% and the water content by 90%, whereas the higher heating value increased by 90.1%. While more than 96% of the organic acid content was converted, the discrepancy of aromatic compounds quantified by 1H-NMR and GC-MS/FID may indicate polymerization of aromatics taking place during the second upgrading step.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3