Hydrogen Jet Flame Simulation and Thermal Radiation Damage Estimation for Leakage Accidents in a Hydrogen Refueling Station

Author:

Fu Xiang1,Yan Xianglin2,Chen Shiyu3,Song Chunyan3,Xiao Zhili1,Luo Hao1,Wan Jiaqi1,Yang Tianqi1ORCID,Xu Nianfeng1,Xiao Jinsheng1ORCID

Affiliation:

1. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

2. Department of Energy, Powerchina Hubei Electric Engineering Co., Ltd., Wuhan 430040, China

3. Comprehensive Smart Energy Business Division, Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, China

Abstract

With the rapid development of hydrogen energy worldwide, the number of hydrogen energy facilities, such as hydrogen refueling stations, has grown rapidly in recent years. However, hydrogen is prone to leakage accidents during use, which could lead to hazards such as fires and explosions. Therefore, research on the safety of hydrogen energy facilities is crucial. In this paper, a study of high-pressure hydrogen jet flame accidents is conducted for a proposed integrated hydrogen production and refueling station in China. The effects of leakage direction and leakage port diameter on the jet flame characteristics are analyzed, and a risk assessment of the flame accident is conducted. The results showed that the death range perpendicular to the flame direction increased from 2.23 m to 5.5 m when the diameter of the leakage port increased from 4 mm to 10 mm. When the diameter of the leakage port is larger than 8 mm, the equipment on the scene will be within the boundaries of the damage. The consequences of fire can be effectively mitigated by a reasonable firewall setup to ensure the overall safety of the integrated station.

Funder

the Shandong Electric Power Engineering Consulting Institute Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3