Flame Resistance Performance of Silicone Pad for Application in Railway Industry

Author:

Jang Hong-Lae1,Kwon Tae-Soon2ORCID,Kang Seok-Won3,Choi Kyungwho4ORCID

Affiliation:

1. Department of Railroad Operation Systems Engineering, Korea National University of Transportation, Uiwang-si 16106, Republic of Korea

2. Railroad Safety Division, Korea Railroad Research Institute, Uiwang-si 16105, Republic of Korea

3. Department of Automotive Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

4. School of Mechanical Engineering, Sungkyunkwan University, Seoul 06351, Republic of Korea

Abstract

This study investigates the applicability of eco-friendly silicone materials with improved flame retardancy as interior materials for Korean urban railway vehicles, focusing on developing nonslip pads for seats made of non-combustible materials. Fire safety standards vary worldwide, necessitating country-specific testing and analysis. For application to the interior of railway vehicles in Korea, technical standards for the flame-retardant performance of railway vehicles were evaluated, and nonslip pads for seats were tested by comparing two types of flame-retardant silicone. In addition to fire property testing on a specimen basis, experimental verification was performed on a full chair assembly including silicone pads. Passenger comfort testing through pressure measurements was also conducted alongside fire safety performance testing The actual fire test showed that the maximum average heat release rate value was about 20% lower than the standard’s upper limit. Using flame-retardant silicone pads enhances fire safety and passenger comfort, satisfactorily meeting the required performance standards for Korean railway vehicles.

Funder

Ministry of Trade, Industry, and Energy (MOTIE, Korea) under the Industrial Technology Innovation Program

Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3