Complex Real-Time Monitoring and Decision-Making Assistance System Based on Hybrid Forecasting Module and Social Network Analysis

Author:

Fan Henghao1,Li Hongmin1,Gu Xiaoyang1,Ren Zhongqiu1

Affiliation:

1. College of Economics and Management, Northeast Forestry University, Harbin 150040, China

Abstract

Timely short-term spatial air quality forecasting is essential for monitoring and prevention in urban agglomerations, providing a new perspective on joint air pollution prevention. However, a single model on air pollution forecasting or spatial correlation analysis is insufficient to meet the strong demand. Thus, this paper proposed a complex real-time monitoring and decision-making assistance system, using a hybrid forecasting module and social network analysis. Firstly, before an accurate forecasting module was constructed, text sentiment analysis and a strategy based on multiple feature selection methods and result fusion were introduced to data preprocessing. Subsequently, CNN-D-LSTM was proposed to improve the feature capture ability to make forecasting more accurate. Then, social network analysis was utilized to explore the spatial transporting characteristics, which could provide solutions to joint prevention and control in urban agglomerations. For experiment simulation, two comparative experiments were constructed for individual models and city cluster forecasting, in which the mean absolute error decreases to 7.8692 and the Pearson correlation coefficient is 0.9816. For overall spatial cluster forecasting, related experiments demonstrated that with appropriate cluster division, the Pearson correlation coefficient could be improved to nearly 0.99.

Funder

Young Scientist Fund of the National Natural Science Foundation of China

National College Students’ innovation and entrepreneurship training program of Northeast Forestry University

Excellent Youth Program of Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3