Deep ResNet-Based Ensemble Model for Short-Term Load Forecasting in Protection System of Smart Grid

Author:

Chen Wenhao,Han GuangjieORCID,Zhu Hongbo,Liao Lyuchao,Zhao Wenqing

Abstract

Short-term load forecasting is a key digital technology to support urban sustainable development. It can further contribute to the efficient management of the power system. Due to strong volatility of the electricity load in the different stages, the existing models cannot efficiently extract the vital features capturing the change trend of the load series. The above problem limits the forecasting performance and creates the challenge for the sustainability of urban development. As a result, this paper designs the novel ResNet-based model to forecast the loads of the next 24 h. Specifically, the proposed method is composed of a feature extraction module, a base network, a residual network, and an ensemble structure. We first extract the multi-scale features from raw data to feed them into the single snapshot model, which is modeled with a base network and a residual network. The networks are concatenated to obtain preliminary and snapshot labels for each input, successively. Also, the residual blocks avoid the probable gradient disappearance and over-fitting with the network deepening. We introduce ensemble thinking for selectively concatenating the snapshots to improve model generalization. Our experiment demonstrates that the proposed model outperforms exiting ones, and the maximum performance improvement is up to 4.9% in MAPE.

Funder

Fujian University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Accuracy in Energy Forecasting using Mixture-of-Experts and Federated Learning;The 15th ACM International Conference on Future and Sustainable Energy Systems;2024-05-31

2. Short-Term Load Forecasting in Smart Grids Using Hybrid Deep Learning;IEEE Access;2024

3. Research on Deep Learning Based-carbon Measurement Model in UHVDC System;2023 4th International Conference on Smart Grid and Energy Engineering (SGEE);2023-11-24

4. Using Clustering To Reduce Models Required For Medium Term Load Forecasting;2023 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2023 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM);2023-09-01

5. The Semantic Segmentation of Standing Tree Images Based on the Yolo V7 Deep Learning Algorithm;Electronics;2023-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3