The Effect of Up-Flow Rate on the Nitrogen Treatment Efficiency and Sludge Characteristics of ANAMMOX Process with Up-Flow Anaerobic Sludge Bed Reactor

Author:

Tsai Tsung-Yueh,Chen Wen-Yun

Abstract

Anaerobic ammonia oxidation (ANAMMOX) technology is a novel biological nitrogen removal technology with potential applications for the treatment of nitrogenous wastewater treatment prospects. Most of the literature explores the growth environment of anaerobic ammonia-oxidizing bacteria and total nitrogen removal efficiency but the influence of reactor operating conditions (such as up-flow rate) on the treatment efficiency and sludge growth property of anaerobic ammonia-oxidizing bacteria is rarely discussed. Therefore, the purpose of this study is to discuss the effect of up-flow rate on the treatment efficiency and sludge property of the anaerobic ammonia oxidation treatment procedure adopting up-flow anaerobic sludge bed (UASB) as a reactor. The results show that up-flow rate has a significant effect on sludge concentration and sludge growth rate. The highest sludge concentration and maximum sludge growth rate could be obtained at the up-flow rate of 3.21 m/h. According to the analysis results of the sludge concentration, we speculate that when the flow rate was lower than 3.21 m/h, the sludge particles did not easily collide with each other to produce a larger sludge floc. On the contrary, when the up-flow rate was higher than 3.21 m/h, the larger sludge floc could be decomposed by the shear force. The sludge concentration was reduced by these two reasons. On the other hand, the average total nitrogen volume removal rates in test runs 1 through to 4 were 0.18 g-N/m3/d, 0.19 g-N/m3/d, 0.20 g-N/m3/d and 0.20 g-N/m3/d at up-flow rates from 1.95 m/h to 3.70 m/h, respectively. Therefore, the treatment efficiency was not affected by the up-flow rate in these operating conditions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference28 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3