Abstract
The primary environmental impact caused by seawater intake operation is marine life impingement resulting from the intake velocity. Environmental Protection Agency (EPA) of United State has regulated the use of velocity cap fitted at intake structures to reduce the marine life impingement. The engineering design parameters of velocity cap has not been well explored to date. This study has been set to determine the fundamental relationships between intake velocity and design parameters of velocity cap, using computational fluid dynamic (CFD) model. A set of engineering design criteria for velocity cap design are derived. The numerical evidence yielded in this study show that the velocity cap should be designed with vertical opening (Hvc) and horizontal shelf (ℓvc). The recommended intake opening ratio (Or) shall be 0.36 Vr−0.31, where Or = Hvc/ℓvc and Vr =V0/Vpipe. Vo is the velocity at the intake window and Vpipe is the suction velocity at the intake pipe. The volume ratio (ωr) between the velocity cap (ωvc) and intake tower (ωIT) is recommended at 0.11 Vr−1.23. The positive outlooks that yielded from this study can be served as a design reference for velocity cap to mitigate the detrimental impacts from the existing intake structure.
Funder
Ministry of Education Malaysia
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference26 articles.
1. Design and construction of open intakes;Voutchkov,2018
2. Environmental impact and impact assessment of seawater desalination
3. An overview of seawater intake facilities for seawater desalination;Pankratz,2004
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献