A Linearly Polarized Wavelength-Tunable Q-Switched Fiber Laser with a Narrow Spectral Bandwidth of 112 MHz

Author:

Zhu Chengjie12,Yang Xuezong2,Liu Yuxuan12,Li Muye2,Sun Yuxiang2,You Wei12,Dong Peng3,Chen Dijun12,Feng Yan12,Chen Weibiao12

Affiliation:

1. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

2. School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

3. School of Fundamental Physics and Mathematical Sciences, Key Laboratory of Gravitational Wave Precision Measurement of Zhejiang Province, Taiji Laboratory for Gravitational Wave Universe, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

Abstract

A tunable and narrow-bandwidth Q-switched ytterbium-doped fiber (YDF) laser is investigated in this paper. The non-pumped YDF acts as a saturable absorber and, together with a Sagnac loop mirror, provides a dynamic spectral-filtering grating to achieve a narrow-linewidth Q-switched output. By adjusting an etalon-based tunable fiber filter, a tunable wavelength from 1027 nm to 1033 nm is obtained. When the pump power is 1.75 W, the Q-switched laser pulses with a pulse energy of 10.45 nJ, and a repetition frequency of 11.98 kHz and spectral linewidth of 112 MHz are obtained. This work paves the way for the generation narrow-linewidth Q-switched lasers with tunable wavelengths in conventional ytterbium, erbium, and thulium fiber bands to address critical applications such as coherent detection, biomedicine, and nonlinear frequency conversion.

Funder

National Key Research and Development Program of China

Research Funds of Hangzhou Institute for Advanced Study

National Natural Science Foundation of China

the Program of the State Key Laboratory of Crystal Materials

the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices

the Hangzhou Agricultural and Social Development initiative Design Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3