Author:
Yuan Wenhua,Huang Xueliang,Fu Jun,Ma Yi,Li Guangming,Huang Qike
Abstract
A numerical model of the micro-free-piston engine was developed and its correctness was verified by the comparison between the simulation and referential experiment results under the same work conditions. Based on this numerical model, the effects of the water vapor blending ratio (α) on combustion thermal performance and emission characteristics of hydrogen (H2) homogeneous charge compressing ignition (HCCI) were investigated numerically. The water vapor impact on combustion temperature was analyzed as well. The simulation results reveal that when the initial equivalent ratio is 0.5, blending H2 with water vapor can delay the ignition time and prolong the whole process. At the same time, the addition of water vapor to H2 decreases the peak combustion temperature and pressure, which will alleviate the detonation phenomenon of the combustion chamber. Moreover, the power output capacity and NOx emissions decrease with the increase in α. When α increases to 0.8, the mixture gas cannot be compressed to ignite. Finally, the dilution effect, thermal effect, and chemical effect of water vapor all have the potential to lower the combustion temperature and the dilution effect plays the leading role.
Funder
National Natural Science Foundation of China
Hunan Provincial Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献