A Review of Thermal Comfort in Residential Buildings: Comfort Threads and Energy Saving Potential

Author:

Aqilah Naja,Rijal Hom BahadurORCID,Zaki Sheikh AhmadORCID

Abstract

Residential buildings instigate a vital role in creating a safe and comfortable indoor living environment. The phenomenon of overheating, an impact of climate change, can cause a negative effect on residents’ productiveness and heat-related illnesses and can even force high pressure on electricity generation by increasing the risk of power outages due to excessive peak cooling and heating requirements. Various issues on building thermal comfort are being evolved and discussed in review articles. However, there are few articles that review the current condition of adaptive thermal comfort studies and the potential for energy savings in residential buildings. Therefore, the aims for this paper are to: identify comfort temperature ranges in residential buildings, investigate the correlation of comfort temperature with indoor and outdoor temperatures with the aid of ‘comfort threads’, and clarify the effect of adaptive measures on residential energy saving potential. This study obtained a large variation of residential comfort temperatures, which mostly depend on the climate and operation modes of the building. ‘Comfort threads’ explains that people are adapting to a large variation of indoor and outdoor temperatures and the wide range of comfort temperature could provide significant energy savings in residential buildings. This review provides insight on and an overview of thermal comfort field studies in residential buildings.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference99 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3