Evaluation of Shrimp Waste Valorization Combining Computer-Aided Simulation and Numerical Descriptive Inherent Safety Technique (NuDIST)

Author:

Zuorro AntonioORCID,Cassiani-Cassiani Daylisney,Meza-González Demmy A.,Moreno-Sader Kariana Andrea,González-Delgado Ángel Darío

Abstract

Nowadays, inherently safer designs are considered as key priorities to prevent or mitigate serious incidents with devastating consequences. The need for process safety assessment during early design phases has motivated the development of several contributions related to computer-aided assessment methodologies to measure the inherent safety of chemical processes. In this work, the large-scale production of chitosan from shrimp wastes was evaluated from a process safety point of view using the numerical descriptive inherent safety technique (NuDIST). To this end, simulation of the chitosan production was performed using Aspen Plus ® to obtain extended mass and energy balances. The assessment of all the chemicals involved within the process was carried out for the following safety parameters: explosivity (EXP), flammability (FL), and toxicity (TOX). The safety assessment of the process included the parameters of temperature (T), pressure (P), and heat of reaction (HR). The maximum chemical safety score was estimated in 171.01 with ethanol as the main contributor to the parameters of explosivity and flammability. The score associated with operating data was calculated at 209.20 and heat of reaction reported to be the most affecting parameter. The NuDIST score was estimated at 380.20. This NuDIST value revealed the low hazards associated with the handling of substances such as shrimp wastes, chitosan, and water, as well as the non-extreme temperature and pressure conditions. In general, the large-scale production of chitosan from shrimp shells was shown to be an inherently safe alternative of waste valorization.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3