Vertical Accuracy Assessment of the ASTER, SRTM, GLO-30, and ATLAS in a Forested Environment

Author:

Huang Jiapeng1ORCID,Yu Yang1

Affiliation:

1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China

Abstract

Understory topography serves as a crucial data source, playing an instrumental role in numerous forest ecosystem applications. However, the use of synthetic aperture radar interferometry and optical stereo for the acquisition of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), SRTM (Shuttle Radar Topography Mission), and GLO-30 (Copernicus Digital Elevation Model) DEM presents unique challenges, particularly in forested environments. These challenges are primarily due to limitations in penetration capability and the effects of foreshortening. ICESat-2/ATLAS, with its higher spatial sampling rate and strong penetrability, presents a new opportunity for estimating forest height parameters and understory terrain. We assessed the vertical accuracy of ASTER, SRTM, GLO-30, and ATLAS in the forest study areas of the United States compared to the reference dataset DTM provided by G-LiHT and we will further discuss the influence of different ground altitudes, forest types, slopes, and aspects on vertical accuracy. The study reveals that in a forested environment, ICESat-2 ATL03 exhibits the highest accuracy at the footprint scale, with a correlation coefficient (R2) close to 1 and Root Mean Square Error (RMSE) = 1.96 m. SRTM exhibits the highest accuracy at the regional scale, with an R2 close to 0.99, RMSE = 11.09 m. A significant decrease in accuracy was observed with increasing slope, especially for slopes above 15°. With a sudden increase in altitude, such as in mountainous situations, the accuracy of vertical estimation will significantly decrease. Aspect and forest cover indeed influence the accuracy of the four DEM products, but this influence lacks a clear pattern. Our results show that ICESat-2 and SRTM data might show sufficient and stable vertical accuracy in a forested environment.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Liaoning Revitalization Talents Program

Talend recruited program of the Chinese Academy of Science

Project Supported Discipline Innovation Team of the Liaoning Technical University

Liaoning Province Doctoral Research Initiation Fund Program

Basic Research Projects of Liaoning Department of Education

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3