Enhancing E-Commerce Recommendation Systems with Multiple Item Purchase Data: A Bidirectional Encoder Representations from Transformers-Based Approach

Author:

Park Minseo1,Oh Jangmin1ORCID

Affiliation:

1. Faculty of AI Convergence, Institute of Knowledge Services, Sungshin Women’s University, Seoul 02844, Republic of Korea

Abstract

This study proposes how to incorporate concurrent purchase data into e-commerce recommendation systems to improve their predictive accuracy. We identified that concurrent purchases account for about 23% of total orders on Katcher’s, a Korean e-commerce platform. Despite the prevalence of concurrent purchases, existing algorithms often overlook this aspect. We introduce a novel transformer-based recommendation algorithm to process a user’s order history, including concurrent purchases. Each order is represented as a natural language sentence, capturing the order timestamp, product names and their attribute values, their corresponding categories, and whether multiple products were purchased together in a single order (i.e., a concurrent purchase). These sentences form a sequence, which serves as a training dataset for fine-tuning Bidirectional Encoder Representations from Transformers (BERT) with the Next Sentence Prediction objective. We validate our ideas by conducting experiments on Katcher’s platform, demonstrating the proposed method’s improved prediction performance compared to existing recommendation systems, with enhanced accuracy and F1 score. Notably, the normalized discounted cumulative gain (NDCG) showed a significant improvement with a large margin. Furthermore, we demonstrate the beneficial impact of integrating concurrent purchase information on prediction performance.

Funder

Sungshin Women’s University Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3