Detection of Arrhythmias Using Heart Rate Signals from Smartwatches

Author:

Huillcen Baca Herwin Alayn1ORCID,Muñoz Del Carpio Toia Agueda2ORCID,Sulla Torres José Alfredo2ORCID,Cusirramos Montesinos Roderick3ORCID,Contreras Salas Lucia Alejandra4ORCID,Correa Herrera Sandra Catalina5ORCID

Affiliation:

1. Academic Department of Engineering and Information Technology, Professional School of Systems Engineering, Faculty of Engineering, Jose Maria Arguedas National University, Andahuaylas 03701, Peru

2. Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04013, Peru

3. Agile Corporation, Arequipa 04013, Peru

4. Professional School of Systems Engineering, San Agustín of Arequipa National University, Arequipa 04013, Peru

5. Armonía Research Group, Hanami Psychosocial Care and Research Center, Bogotá 11001, Colombia

Abstract

According to the World Health Organization (WHO), cardiovascular illnesses, including arrhythmia, are the primary cause of mortality globally, responsible for over 31% of all fatalities each year. To reduce mortality, early and precise diagnosis is essential. Although the analysis of electrocardiograms (ECGs) is the primary means of detecting arrhythmias, it depends significantly on the expertise and subjectivity of the health professional reading and interpreting the ECG, and errors may occur in detection. Artificial intelligence provides tools, techniques, and models that can support health professionals in detecting arrhythmias. However, these tools are based only on ECG data, of which the process of obtaining is an invasive, high-cost method requiring specialized equipment and personnel. Smartwatches feature sensors that can record real-time signals indicating the heart’s behavior, such as ECG signals and heart rate. Using this approach, we propose a machine learning- and deep learning-based approach for detecting arrhythmias using heart rate data obtained with smartwatches. Heart rate data were collected from 252 patients with and without arrhythmias who attended a clinic in Arequipa, Peru. Heart rates were also collected from 25 patients who wore smartwatches. Ten machine learning algorithms were implemented to generate the most effective arrhythmia recognition model, with the decision tree algorithm being the most suitable. The results were analyzed using accuracy, sensitivity, and specificity metrics. Using Holter data yielded values of 93.2%, 91.89%, and 94.59%, respectively. Using smartwatch data yielded values of 70.83%, 91.67%, and 50%, respectively. These results indicate that our model can effectively recognize arrhythmias from heart rate data. The high sensitivity score suggests that our model adequately recognizes true positives; that is, patients with arrhythmia. Likewise, its specificity suggests an adequate recognition of false positives.

Funder

PROCIENCIA—CONCYTEC, Peru

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3