Investigation of Volumic Permanent-Magnet Eddy-Current Losses in Multi-Phase Synchronous Machines from Hybrid Multi-Layer Model

Author:

Benmessaoud YoucefORCID,Ouamara DaoudORCID,Dubas FrédéricORCID,Hilairet MickaelORCID

Abstract

This paper investigates the permanent-magnet (PM) eddy-current losses in multi-phase PM synchronous machines (PMSM) with concentric winding and surface-mounted PMs. A hybrid multi-layer model, combining a two-dimensional (2-D) generic magnetic equivalent circuit (MEC) with a 2-D analytical model based on the Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series), performs the eddy-current loss calculations. First, the magnetic flux density was obtained from the 2-D generic MEC and then subjected to the Fast Fourier Transform (FFT). The semi-analytical model includes the automatic mesh of static/moving zones, the saturation effect and zones connection in accordance with rotor motion based on a new approach called “Air-gap sliding line technic”. The results of the hybrid multi-layer model were compared with those obtained by three-dimensional (3-D) nonlinear finite-element analysis (FEA). The PM eddy-current losses were estimated on different paths for different segmentations as follow: (i) one segment (no segmentation), (ii) five axial segments, and (iii) two circumferential segments, where the non-uniformity loss distribution is shown. The top of PMs presents a higher quantity of losses compared to the bottom.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3