Nano Zero-Valent Iron (nZVI) Encapsulated with ABS (nZVI/(ABS + EC)) for Sustainable Denitrification Performance and Anti-Aggregation

Author:

Meng Fanbin12,Yang Yuning1,Li Miao2,Zhu Qizhi1,Qin Bing1,Yang Chunpeng1

Affiliation:

1. SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China

2. School of Environment, Tsinghua University, Beijing 100084, China

Abstract

Aggregation and sharp reactivity decrease are the key problems of using nano zero-valent iron (nZVI) as a potential reaction medium for a permeable reactive barrier (PRB). In this study, nZVI particles encapsulated within an acrylonitrile–butadiene–styrene (ABS) matrix (nZVI/(ABS + EC)) was fabricated, which for the first time successfully simultaneously solved the above problems via accurately regulating the distribution of nZVI particles in the ABS matrix and regulating the contact between nZVI particles and the contaminated aqueous environment. In addition, the size and number of the pores throughout the ABS matrix were first regulated by ethyl cellulose (EC) for the purpose of controlling the contact between nZVI particles and the nitrate contaminant, affording apparent rate constants (kobs) for denitrification performance in the range of 0.0423 to 0.0820 min−1. The remediation of simulated nitrate-contaminated solution by nZVI/(ABS + EC) was suitably described by the first-order kinetics model, with kobs ranging from 0.0423 to 0.2036 min−1, and functional relationship models of kobs with the dosages of EC (dEC) and nZVI (dFe) during encapsulation were developed for the quantitative regulation of a sustainable denitrification performance. Results revealed that encapsulation prevents the aggregation of nZVI, rendering a sustainable denitrification performance of the material; the denitrification performance was demonstrated to be affected and quantitatively regulated by the encapsulation and application conditions. Using nZVI/(ABS + EC) as the reaction medium for PRB, the pore blocking of PRB can be avoided, and the sustainable remediation performance can be quantitatively regulated and predicted.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3