Model Driven Development Applied to Complex Event Processing for Near Real-Time Open Data

Author:

Clemente Pedro,Lozano-Tello Adolfo

Abstract

Nowadays, data are being produced like never before because the use of the Internet of Things, social networks, and communication in general are increasing exponentially. Many of these data, especially those from public administrations, are freely offered using the open data concept where data are published to improve their reutilisation and transparency. Initially, the data involved information that is not updated continuously such as budgets, tourist information, office information, pharmacy information, etc. This kind of information does not change during large periods of time, such as days, weeks or months. However, when open data are produced near to real-time such as air quality sensors or people counters, suitable methodologies and tools are lacking to identify, consume, and analyse them. This work presents a methodology to tackle the analysis of open data sources using Model-Driven Development (MDD) and Complex Event Processing (CEP), which help users to raise the abstraction level utilised to manage and analyse open data sources. That means that users can manage heterogeneous and complex technology by using domain concepts defined by a model that could be used to generate specific code. Thus, this methodology is supported by a domain-specific language (DSL) called OpenData2CEP, which includes a metamodel, a graphical concrete syntax, and a model-to-text transformation to specific platforms, such as complex event processing engines. Finally, the methodology and the DSL have been applied to two near real-time contexts: the analysis of air quality for citizens’ proposals and the analysis of earthquake data.

Funder

Ministerio de Economía y Competitividad

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3