Biases Analysis and Calibration of ICESat-2/ATLAS Data Based on Crossover Adjustment Method

Author:

Wang Tao,Fang Yong,Zhang ShuangchengORCID,Cao Bincai,Wang Zhenlei

Abstract

The new-generation photon-counting laser altimeter aboard the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) has acquired unprecedented high-density laser data on the global surface. The continuous analysis and calibration of potential systematic biases in laser data are important for generating highly accurate data products. Current studies mainly calibrate the absolute systematic bias of laser altimeters based on external reference data. There are few studies that focus on the analysis and calibration of relative systematic biases in long-term laser data. This paper explores a method for systematic biases analysis and calibration of ICESat-2 laser data based on track crossovers for the first time. In the experiment, the simulated data and ICESat-2 data were used to verify the algorithm. The results show that, during the three-year period in orbit, the standard deviation (STD) and bias of the crossover differences of the ICESat-2 terrain data were 0.82 m and −0.03 m, respectively. The simulation validation well demonstrate that the crossover adjustment can calibrate the relative bias between different beams. For ICESat-2 data, the STD of the estimated systematic bias after crossover adjustment was 0.09 m, and the mean absolute error (MAE) was 0.07 m. Compared with airborne lidar data, the bias and root mean square error (RMSE) of the ICESat-2 data remained basically unchanged after adjustment, i.e., −0.04 m and 0.38 m, respectively. This shows that the current ICESat-2 data products possess excellent internal and external accuracy. This study shows the potential of crossover for evaluating and calibrating the accuracy of spaceborne photon-counting laser altimeter data products, in terms of providing a technical approach to generate global/regional high-accuracy point cloud data with consistent accuracy.

Funder

Equipment Development Project of Aerospace System Department

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3