A Stochastic Model to Predict Flow, Nutrient and Temperature Changes in a Sewer under Water Conservation Scenarios

Author:

Bailey OliviaORCID,Zlatanovic LjiljanaORCID,van der Hoek Jan PeterORCID,Kapelan Zoran,Blokker MirjamORCID,Arnot TomORCID,Hofman JanORCID

Abstract

Reducing water use could impact existing sewer systems but this is not currently well understood. This work describes a new flow and wastewater quality model developed to investigate this impact. SIMDEUM WW® was used to generate stochastic appliance-specific discharge profiles for wastewater flow and concentration, which were fed into InfoWorks® ICM to quantify the impacts within the sewer network. The model was validated using measured field data from a sewer system in Amsterdam serving 418 households. Wastewater concentrations of total suspended solids (TSS), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TPH) were sampled on an hourly basis, for one week. The results obtained showed that the InfoWorks® model predicted the mass flow of pollutants well (R-values 0.69, 0.72 and 0.75 for COD, TKN and TPH respectively) but, due to the current lack of a time-varying solids transport model within InfoWorks®, the prediction for wastewater concentration parameters was less reliable. Still, the model was deemed capable of analysing the effects of three water conservation strategies (greywater reuse, rainwater harvesting and water-saving appliances) on flow, nutrient concentrations, and temperature in sewer networks. Results show through a 62% reduction in sewer flow, COD, TKN and TPH concentrations increased by up to 111%, 84% and 75% respectively, offering more favourable conditions for nutrient recovery.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3