Affiliation:
1. The Beacom College of Computer and Cyber Sciences, Dakota State University, Madison, SD 57042, USA
Abstract
Device identification is a fundamental issue in the Internet of Things (IoT). Many critical services, including access control and intrusion prevention, are built on correctly identifying each unique device in a network. However, device identification faces many challenges in the IoT. For example, a common technique to identify a device in a network is using the device’s MAC address. However, MAC addresses can be easily spoofed. On the other hand, IoT devices also include dynamic characteristics such as traffic patterns which could be used for device identification. Machine-learning-assisted approaches are promising for device identification since they can capture dynamic device behaviors and have automation capabilities. Supervised machine-learning-assisted techniques demonstrate high accuracies for device identification. However, they require a large number of labeled datasets, which can be a challenge. On the other hand, unsupervised machine learning can also reach good accuracies without requiring labeled datasets. This paper presents an unsupervised machine-learning approach for IoT device identification.
Funder
National Centers of Academic Excellence in Cybersecurity
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献