IoT Device Identification Using Unsupervised Machine Learning

Author:

Koball Carson1ORCID,Rimal Bhaskar P.1ORCID,Wang Yong1ORCID,Salmen Tyler1,Ford Connor1

Affiliation:

1. The Beacom College of Computer and Cyber Sciences, Dakota State University, Madison, SD 57042, USA

Abstract

Device identification is a fundamental issue in the Internet of Things (IoT). Many critical services, including access control and intrusion prevention, are built on correctly identifying each unique device in a network. However, device identification faces many challenges in the IoT. For example, a common technique to identify a device in a network is using the device’s MAC address. However, MAC addresses can be easily spoofed. On the other hand, IoT devices also include dynamic characteristics such as traffic patterns which could be used for device identification. Machine-learning-assisted approaches are promising for device identification since they can capture dynamic device behaviors and have automation capabilities. Supervised machine-learning-assisted techniques demonstrate high accuracies for device identification. However, they require a large number of labeled datasets, which can be a challenge. On the other hand, unsupervised machine learning can also reach good accuracies without requiring labeled datasets. This paper presents an unsupervised machine-learning approach for IoT device identification.

Funder

National Centers of Academic Excellence in Cybersecurity

Publisher

MDPI AG

Subject

Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3